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We have derived expressions for the distribution of temperatures over

the cross section and for the Nusselt numbers on the two walls of an

annular channel for the case of developed laminar flow of an incom-
pressible liquid with a constant heat-flux density along the length, but

variable over the perimeter of the outside wall.

Let us consider the problem of the transfer of heat

in the laminar flow of a liquid through a tube of an-
nular cross section. We will adopt the following as-
sumptions: 1) the flow of the liquid is laminar and
steady-state; 2) the physical properties of the liquid

are constant; the liquid itself is incompressible; 3) the
motion of the liquid has been stabilized hydrodynami-

cally and thermally; 4) there are no internal heat

sources in the liquid; 5) the heat-flux density at the in-

side wall of the channel is constant along the length

and over the perimeter:q, = const; 6) the heat flux den-
sity at the ouiside wall is constant over the length, but
variable over the perimeter: q, = 0 whend < ¢ < 2r—%
and g, = g, (1 + m cos ¢) when =0 < ¢ = 0. Here qq =

= const, m = const. Having solved the equations of

motion and energy for the indicate conditions, we ob-

tained the following results:
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If we know the temperature field of the liquid, we
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can easily determine the Nusselt numbers for the two
sides of the tube, Thus, for the outside wall we have
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From the expressions for Nu; and Nu, we can derive
several particular solutions. For example, when m = 0
we have a case in which the segment of the outside sur-
face with the angle 20 is heated at a constant flux den-
sity qwse = dygs While the remaining portionof the surface
is thermally insulated. (The conditions for the heating
of the inside wall of the tube remain unchanged.)
Finally, if we assume that the ouside wall is heated
when

g0 =const (p=mn, m=0)
and energy disSipation is neglected, as
Ry—> 0 (ry—0) and qy =0

From (2) we obtain 1/Nu,=18(3—218) =11/48, or
Nu,=4.361s a known value when gy, =constinthe case
of a round tube,

NOTATION

x is the coordinate along the flow; ¢ is the azimuthal
coordinate; 6 is the fixed value of ¢; r is the radial coor-
dinate; ry and ry are the radii of internal and external
channel surfaces, respectively; R = r/ry is the dimension-

754

less radius; Ap is the pressure drop across the channel
length 4 6 = t(r, ¢, x)—t(x) is the temperature of the lig-
uid with respect to the means; t is the temperature of the
liquid; t is the mean temperature of the liquid; q; and q,
are the heat—flux densities on the internal and external
walls of channels, respectively; p is the dynamic viscosity
of the liquid; A is the thermal conductivity of the liquid;
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are the dimensional constant numbers.
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